

ISTITUTO COMPRENSIVO STATALE

Scuola dell'infanzia – Primaria – Secondaria di I grado VIA TIRSO, 25/A - 09094 - MARRUBIU (OR) TEL 0783 859378 – FAX 0783 859766 Codice fiscale: 90027730952 – Codice IPA:UFIR07

E-Mail ORIC810007@istruzione.it – PEC ORIC810007@pec.istruzione.it Sito Web www.comprensivomarrubiu.edu.it

Circolare n. 157

Marrubiu, 19.12.2024

A tutti i Docenti Al Personale A.T.A. Ai Genitori

Agli Alunni

Istituto Comprensivo Marrubiu

Oggetto: Sistema nazionale di allarme pubblico IT ALERT - Indicazioni operative per la sperimentazione di messaggi di allarme pubblico IT-alert per precipitazioni intense.

Si trasmette la nota USR prot. n. 24196 del 18 dicembre 2024 relativa all'oggetto. Si invitano le SS.LL alla scrupolosa lettura del contenuto della nota e dei suoi allegati.

Cordiali saluti

IL DIRIGENTE SCOLASTICO Prof.ssa Marina Enna

(Firma autografa sostituita a mezzo stampa ai sensi dell'art.3 del D.Lgs. n.39/1993)

Ministero dell'istruzione e del merito Ufficio Scolastico Regionale per la Sardegna Direzione Generale Ufficio IV

Ai Dirigenti degli istituti scolastici statali e ai Coordinatori didattici delle scuole paritarie di della Sardegna LORO SEDI

Ai Dirigenti degli Uffici Scolastici Territoriali dell'USR Sardegna LORO SEDI

All'Ufficio I Nostra D.G. SEDE

OGGETTO: Sistema nazionale di allarme pubblico per l'informazione diretta alla popolazione denominato "IT-alert" - Decreto n. 4300 del 06.12.2024

Si trasmette, in allegato, il decreto del Capo del Dipartimento della protezione civile di adozione delle "Indicazioni operative per la sperimentazione di messaggi di allarme pubblico IT-alert per precipitazioni intense" unitamente ai relativi allegati.

Si prega le SS.LL di voler dare massima diffusione della presente.

Si ringrazia per la consueta collaborazione e si porgono cordiali saluti.

IL DIRETTORE GENERALE

Francesco Feliziani

Firmato digitalmente da FRANCESCO FELIZIANI C = IT O = Ministero dell'Istruzione e del Merito

II Funzionario *Luigi Saba*

Allegati:

- Nota AOOGABMI 0179496 del 10.12.2024;
- Decreto Rep. n. 4300 del 6.12.2024;
- Indicazioni Operative.

SISTEMA DI ALLARME PUBBLICO IT-ALERT

INDICAZIONI OPERATIVE PER LA SPERIMENTAZIONE DI MESSAGGI DI ALLARME PUBBLICO IT-ALERT PER "PRECIPITAZIONI INTENSE"

Le presenti indicazioni operative sono emanate ai sensi della Direttiva del Presidente del Consiglio dei ministri del 23 ottobre 2020, pubblicata nella Gazzetta Ufficiale, n. 36, del 12 febbraio 2021, recante "Allertamento di protezione civile e sistema di allarme pubblico IT-alert", come modificata e risultante dal testo coordinato di cui all'Allegato B della Direttiva del Ministro della protezione civile e le politiche del mare del 7 febbraio 2023, nella Gazzetta Ufficiale, n. 91, del 18 aprile 2023.

Per le Province Autonome di Trento e di Bolzano restano in vigore le competenze loro affidate dai relativi statuti e dalle relative norme di attuazione, ai sensi dei quali provvedono alle finalità delle presenti indicazioni operative. I messaggi IT-alert inviati sul territorio della Provincia Autonoma di Bolzano sono diramati congiuntamente nella lingua italiana e tedesca e, ove possibile, anche nella lingua inglese.

Sommario

Acr	onimi e abbreviazioni	4
Doc	cumenti di riferimento	5
Glo	ssario	6
1.	Introduzione	8
2.	Contesto di riferimento della sperimentazione e identificazione delle aree interes dal messaggio	
3.	sperimentazione del messaggio IT-alert per le "precipitazioni intense"	11
4.	Messaggio IT-alert "precipitazione intense" nella fase di sperimentazione	13
4.1	Invio del messaggio IT-alert	13
4.2	Contenuti del messaggio	13
4.3	Aree geografiche a cui si invia il messaggio	13
5.	Limiti	15
5.1	Limiti delle previsioni meteorologica	16
5.2	Limiti nella stima della precipitazione	16
5.3	Limiti nella stima della severità degli eventi	17
5.4	Limiti dell'utilizzo in fase sperimentale	18
6.	Trasparenza e tracciabilità	19
Alle	egato	20
1.	Contesto fenomenologico	20
2.	Contesto operativo	20
3.	L'algoritmo per la stima automatica del superamento della soglia di severità fenomeni atmosferici che individua le precipitazioni intense ai fini dell'uso sistema di allarme pubblico IT-alert	del
3.1	Severità dei temporali	23
3.2	Severità delle precipitazioni persistenti	24
3.3	Identificazione e previsione di aree possibilmente interessate da precipitazintense da allertare	
3.4	Soglie di severità	25
3.5	Canali di trasmissione dei messaggi e attivazione degli stessi	26
3.6	File "CAP-IT"	26

Acronimi e abbreviazioni

ARPA Agenzia Regionale per la Protezione dell'Ambiente

CFC Centro Funzionale Centrale del Dipartimento della protezione civile

DPC Dipartimento della Protezione Civile

ETM Echo Top Map

EUMETSAT European meteorolgical satellite agency

HRD Heavy Rain Detection

HRI Heavy Rain Index

HRT Heavy Rain Tracking

IS Indice di severità, delle precipitazioni intense

IT-alert Sistema di allarme pubblico di protezione civile

LGT Lightning

MCM Modified Conditional Merging

PCM Presidente del Consiglio dei Ministri

POH Probability of Hail

RP Rete Pluviometrica

RR Rete Radar meteorologica

SRI Surface Rainfall Intensity

SRT Surface Rainfall Total

SSI Storm Severity Index

TLC Telecomunicazioni

UTC Coordinated Universal Time, Tempo Universale Coordinato

VIL Vertically Integrated Liquid

Documenti di riferimento

- RN-1 Decreto legislativo 2 gennaio 2018, n. 1, "Codice della protezione civile", pubblicato nella Gazzetta Ufficiale n. 17 del 22 gennaio 2018, entrato in vigore il 6 febbraio 2018, e ss.mm.ii.
- RN-2 Decreto legislativo 1° agosto 2003, n. 259, "Codice delle Comunicazioni Elettroniche", pubblicato nella Gazzetta Ufficiale n. 214 del 15 settembre 2003, entrato in vigore il 16 settembre 2003, e ss.mm.ii.
- RN-3 Direttiva del Presidente del Consiglio dei ministri del 27 febbraio 2004 recante "Indirizzi operativi per la gestione del sistema di allertamento nazionale per il rischio idrogeologico e idraulico", pubblicata nella Gazzetta Ufficiale n. 59 dell'11 marzo 2004, e ss.mm.ii.
- RN-4 Decreto del Presidente del Consiglio dei ministri del 19 giungo 2020 sulle modalità e criteri di attivazione e gestione del servizio IT-alert, pubblicato nella Gazzetta Ufficiale n. 222 del 7 settembre 2020.
- RN-5 Direttiva del Presidente del Consiglio dei ministri del 23 ottobre 2020, pubblicata nella Gazzetta Ufficiale, n. 36, del 12 febbraio 2021, recante "Allertamento di protezione civile e sistema di allarme pubblico IT-alert" e la direttiva del Ministro per la protezione civile e le politiche del mare del 7 febbraio 2023 recante "Allertamento di protezione civile e sistema di allarme pubblico IT-alert" pubblicata nella Gazzetta Ufficiale, n. 91, del 18 aprile 2023.

Glossario

Per gli scopi delle presenti indicazioni operative, si definisce e si utilizza la seguente terminologia.

Area target. Area geografica interessata, o che si prevede possa essere interessata nei successivi 30 minuti, da precipitazioni intense. È l'area all'interno della quale, con il canale "cell broadcast", il sistema nazionale di allarme pubblico "IT-alert" dirama messaggi.

CAP "Common Alerting Protocol". È un formato standard internazionale per allerte e allarmi di emergenza e avvisi pubblici di emergenza, configurato secondo specifiche e necessità di comunicazione di allerte e allarmi che mantiene l'interoperabilità con altri profili CAP.

CAP-IT. Profilo italiano del CAP, configurato secondo specifiche e necessità del Sistema nazionale della protezione civile.

Cell-tracking. Previsione nel brevissimo termine – fino a 60 minuti – della traiettoria e dell'estensione della porzione di precipitazione intensa. Si basa sull'applicazione di tecniche di "cross-correlazione spaziale" di due o più acquisizioni radar consecutive.

Precipitazione intensa. Fenomeno atmosferico caratterizzato da precipitazioni solide o liquide di severità superiore alla soglia individuata. Include i "temporali" e le "precipitazioni persistenti", come definiti nel presente glossario.

Precipitazione persistente. Fenomeno atmosferico caratterizzato da precipitazioni, solide o liquide, con severità superiore alla soglia individuata, di durata generalmente superiore a un'ora, e durante il quale si possono verificare precipitazioni a carattere temporalesco.

Rete Pluviometrica. Rete di stazioni pluviometriche che copre l'intero territorio nazionale, ancorché con densità di strumenti e frequenze di misura e aggiornamento disomogeneo nelle diverse parti del territorio, operante nell'ambito della rete dei Centri funzionali di protezione civile. È costituita dalle reti di stazioni pluviometriche di proprietà e operate dalle Regioni e Province autonome, che detengono la proprietà dei dati raccolti. Il Centro funzionale centrale del Dipartimento della protezione civile raccoglie, organizza e ridistribuisce i dati pluviometrici raccolti dalle reti delle Regioni e Province autonome.

Rete Radar meteorologica. Rete di radar meteorologici che coprono quasi interamente il territorio nazionale. I singoli apparati radar, in banda C e in banda X, sono di proprietà e sono operati da diverse amministrazioni (Dipartimento della protezione civile, Regioni, Province autonome, Ente Nazionale Assistenza al Volo, Aeronautica Militare). Il Centro funzionale centrale del Dipartimento della protezione civile utilizza i dati raccolti dalla rete radar meteorologica, unitamente a dati rilevati da altre reti e piattaforme, per produrre e aggiornare ogni 5 minuti, prodotti di precipitazione per l'intero territorio nazionale.

Tempo reale. Tempo o periodo effettivo durante il quale si verifica un processo o un evento atmosferico, o sono resi disponibili dati e misure d'interesse meteorologico prima che siano intervenute variazioni. Può includere un periodo di poco antecedente al momento in cui i dati e le misure sono effettuate. Ad esempio, i prodotti in tempo reale della Rete Radar meteorologica necessitano circa 10 minuti per essere realizzati.

Temporale. Fenomeno atmosferico caratterizzato da precipitazioni intense con limitata estensione spaziale e di breve durata (generalmente inferiore a 30-60 minuti), accompagnato da scariche elettriche (fulmini), raffiche di vento e, eventualmente, da grandine. Per gli scopi del sistema di allarme pubblico "IT-alert", include il rovescio, fenomeno atmosferico costituito da precipitazioni intense senza scariche elettriche (fulmini).

1. Introduzione

Le presenti indicazioni operative per lo scenario precipitazioni intense sono emanate ai sensi di quanto previsto dall'art. 5 della direttiva del Presidente del Consiglio dei ministri del 23 ottobre 2020, così come modificata e integrata dalla direttiva del Ministro della protezione civile e le politiche del mare del 7 febbraio 2023 [RN-5].

Sono finalizzate a definire gli ambiti di utilizzo del sistema di allarme pubblico "IT-alert" per il rischio precipitazioni intense, nonché l'organizzazione del Sistema di protezione civile per rendere possibile tale utilizzo e i suoi limiti operativi, indicando, in particolare gli obiettivi, le modalità di invio, i soggetti responsabili dell'invio dei messaggi, l'area da allertare, la tracciabilità e i contenuti del "messaggio IT-alert".

Il sistema di allarme pubblico in Italia – nelle more del pieno recepimento nel nostro Paese della Direttiva UE 2018/1972 – è stato introdotto per la prima volta dall'art. 28 del **decreto-legge 18 aprile 2019, n. 32**, che ha apportato una prima serie di modifiche al decreto legislativo 1° agosto 2003, n. 259, recante «Codice delle comunicazioni elettroniche». L'obiettivo è quello di garantire la tutela della vita umana tramite servizi mobili di comunicazione rivolti agli utenti interessati da gravi emergenze, catastrofi imminenti o in corso. La norma prevede anche l'introduzione del servizio IT-alert attraverso il quale inviare messaggi. La modalità prevista è il *cell broadcast*, sistema che consente la diffusione dei messaggi a tutti i terminali presenti all'interno di una determinata area geografica coperta da celle radiomobili.

Con l'adozione del decreto legislativo 8 novembre 2021, n. 207, che ha novellato il codice delle comunicazioni elettroniche, l'impianto del sistema italiano è stato adattato alle indicazioni europee, recependo la citata Direttiva UE, e alle reali esigenze del Paese. In particolare, il decreto ha stabilito che il sistema di allarme pubblico italiano e il servizio IT-alert sono coincidenti e le situazioni nelle quali può essere attivato IT-alert non sono soltanto gli eventi di protezione civile, come definiti dal Codice della protezione civile del 2018, ma più in generale le gravi emergenze e catastrofi imminenti e in corso che possono interessare il nostro Paese.

A livello tecnico, con il decreto del Presidente del Consiglio dei ministri del 19 giugno 2020, n. 110, è stato adottato il «Regolamento recante modalità e criteri di attivazione e gestione del servizio IT-alert» come previsto dall'art. 28, comma 2, del decreto-legge 18 aprile 2019, n. 32, convertito, con modificazioni, dalla legge 14 giugno 2019, n. 55. Sono state quindi regolate le modalità di attivazione del sistema IT-alert e definiti gli aspetti tecnico-operativi del servizio.

La direttiva del Presidente del Consiglio dei ministri del 23 ottobre 2020, ha integrato ed ampliato la disciplina del sistema e, in particolare, ha fornito una prima regolazione concernente l'omogeneizzazione di terminologie e definizioni e le modalità di organizzazione strutturale e funzionale sia del sistema di allertamento nazionale (preesistente e regolato dalla direttiva del Presidente del Consiglio dei Ministri del 27 febbraio 2004 richiamata espressamente dall'art. 17 del Codice della Protezione Civile), sia del sistema di allarme pubblico denominato IT-alert. A seguito dell'adozione del citato decreto legislativo n. 207, tale direttiva è stata modificata con direttiva del Ministro della protezione civile e delle politiche del mare del 7 febbraio 2023, superando la

dualità tra "sistema di allarme pubblico" e "servizio IT-alert". In particolare, nel nuovo impianto normativo, in riferimento ai rischi di protezione civile, sono stati definiti alcuni scenari di livello nazionale per i quali è previsto l'utilizzo del sistema di allarme pubblico: incidenti nucleari o situazione di emergenza radiologica, collasso di una grande diga, incidenti rilevanti in stabilimenti soggetti al decreto legislativo 26 giugno 2015, n. 105, attività vulcanica, relativamente ai vulcani Vesuvio, Campi Flegrei, Vulcano e Stromboli, maremoto generato da un sisma e precipitazioni intense.

Il presente documento è articolato con una prima parte dedicata al contesto organizzativo e agli scenari di utilizzo di IT-alert per il rischio specifico, seguita dalla definizione del "Messaggio" e delle modalità di invio dello stesso; infine sono riportati i limiti connessi all'applicazione del sistema IT-alert in generale e per lo specifico rischio. Il sistema di allarme pubblico risente, infatti, di limiti correlati all'incertezza connessa ai fenomeni naturali, alla conoscenza scientifica imperfetta, alle capacità tecnologiche disponibili e a vincoli derivanti dalla disponibilità delle risorse umane, strumentali e finanziarie, nonché dalle circostanze in cui le attività di valutazione e decisionali si concretizzano, sovente in contesti di urgenza ed emergenza che richiedono decisioni immediate.

2. Contesto di riferimento della sperimentazione e identificazione delle aree interessate dal messaggio

La Direttiva [RN-5] prevede fra le tipologie di "messaggi IT-alert" quello relativo alla tipologia di rischio di protezione civile denominato "precipitazioni intense"; stabilendo che le indicazioni operative per questo specifico rischio definiscano "principi tecnici per determinare preventivamente e in via generale soglie ed altri elementi utili per identificare i fenomeni in questione oltre che per la delimitazione degli areali e delle tempistiche di interesse affinché il sistema operi in via automatica". Ai fini del sistema "IT-alert", le precipitazioni si definiscono "intense" al superamento di una determinata soglia di severità, come meglio di seguito illustrato nelle presenti indicazioni operative.

Per la determinazione della citata soglia di severità è stato sviluppato e validato, dal Dipartimento della Protezione civile in collaborazione con i Centri di Competenza, l'algoritmo RADAR-NEWS per l'identificazione e la previsione a breve termine delle precipitazioni intense. Si rinvia all'allegato 1 per la descrizione di dettaglio del contesto fenomenologico e operativo e il funzionamento dell'algoritmo utilizzato per la valutazione della severità delle precipitazioni intense e, al superamento del valore di severità stabilito, che qualifica il fenomeno come "precipitazione intensa", per la generazione automatica dei messaggi IT-alert per il rischio associato. Nello stesso allegato vengono anche descritti sommariamente i limiti nella stima della precipitazione e del relativo livello di severità.

Considerata la specificità delle indicazioni operative per il caso d'uso "precipitazioni intense" e la necessità, prima del passaggio all'operatività del sistema, di sperimentare l'impiego dell'algoritmo RADAR-NEWS nella generazione automatica dei messaggi IT-alert anche in casi reali, si è ritenuto necessario predisporre e adottare delle **indicazioni operative per il periodo di sperimentazione**, in cui sono definiti:

- la soglia di severità che qualifica il fenomeno come "precipitazione intensa" ai fini dell'impiego del sistema "IT-alert";
- gli obiettivi e l'identificazione delle aree da allertare;
- gli scenari di utilizzo e i contenuti del messaggio "IT-alert precipitazioni intense" nella fase di sperimentazione.
- il soggetto responsabile dell'invio dei messaggi;
- le modalità di invio.

L'algoritmo RADAR NEWS e i suoi automatismi, rispetto alle altre tipologie di rischio per le quali il sistema IT-alert è operativo dal 13 febbraio 2024, pone essenzialmente due aspetti che dovranno essere oggetto di una approfondita sperimentazione prima del passaggio all'operatività del sistema:

- 1) l'area target del messaggio IT-alert non è nota a priori ma, nel momento in cui, sulla base dei dati e delle informazioni disponibili in ragione dei limiti tecnologici e di funzionamento esistenti, viene delimitata dall'algoritmo al superamento di determinate soglie di severità del fenomeno, deve essere trasmessa istantaneamente agli operatori di telefonia mobile perché attivino le celle che trasmettono il segnale del messaggio cell broadcast.
- 2) una volta delimitata l'area target, sulla base dei dati e delle informazioni disponibili in ragione dei limiti tecnologici e di funzionamento esistenti deve essere possibile aggiornare il messaggio cell broadcast in base alla previsione a breve termine (nowcasting) derivante dall'algoritmo, di fatto ipotizzando la probabile evoluzione nello spazio e nel tempo della precipitazione intensa e, se necessario, aggiornando di conseguenza il messaggio cell broadcast.

3. Sperimentazione del messaggio IT-alert per le "precipitazioni intense"

In considerazione delle specificità delle precipitazioni intese descritte nel paragrafo precedente e, a differenza di quanto svolto per le tipologie di rischio per le quali il sistema IT-alert è operativo dal 13 febbraio 2024, per questa sperimentazione saranno programmate quattro diverse fasi di test:

fase 1: partendo da eventi passati caratterizzati da "precipitazioni intense" già studiati ed analizzati dal Dipartimento della Protezione civile per lo sviluppo e validazione dell'algoritmo RADAR-NEWS, il Dipartimento stesso programmerà ed effettuerà dei "test di laboratorio" in cui simulare la creazione del messaggio *IT-alert* valutando per i singoli casi presi in esame le tempistiche dei vari passaggi e duplicazione/ripetizione messaggi.

fase 2: completata positivamente la fase 1, e valutato l'esito congiuntamente con le Regioni e Province Autonome e ANCI, in caso di esito positivo, il Dipartimento della Protezione Civile procederà a testare la generazione dei messaggi IT-alert su casi reali, valutando per i singoli casi presi in esame i punti analizzati nella fase 1 (tempistiche e duplicazione/ripetizione messaggi) e senza reale invio dei messaggi tramite cell-broadcast. In questa fase della sperimentazione e nella successiva, viene reso disponibile ai Centri Funzionali Decentrati, alle Sale Operative di Protezione Civile delle Regioni e delle Province Autonome, ai Comuni capoluogo delle Città Metropolitane, una piattaforma di visualizzazione degli eventi.

fase 3: completata positivamente la fase 2 e valutato l'esito congiuntamente con le Regioni e Province Autonome e ANCI, in caso di esito positivo e una volta completata l'implementazione della modifica della modalità di selezione delle celle telefoniche a cura degli Operatori di telefonia, il Dipartimento della Protezione Civile procederà a testare il sistema per l'invio del messaggio cell broadcast su casi reali e su canale di test (3 cifre - 916). Questa fase di test dipende dall'effettivo verificarsi di fenomeni atmosferici di severità superiore alla soglia individuata.

In questa fase della sperimentazione, oltre alla piattaforma di visualizzazione degli even-ti attivata in fase 2, viene reso disponibile ai Centri Funzionali Decentrati, alle Sale Ope-rative di Protezione Civile delle Regioni e Province Autonome, ai Comuni capoluogo delle Città Metropolitane, un sistema IVR (*Interactive Voice Response*) che consenta di comunicare in maniera automatica l'avvenuto invio del messaggio IT-alert. I Presidenti delle Regioni e delle Province Autonome e i Sindaci delle Città Metropolitane rendono disponibili e si impegnano ad aggiornare la rubrica dei destinatari dei messaggi IVR.

fase 4: completata positivamente la fase 3 e valutato l'esito congiuntamente con le Regioni e Province Autonome e ANCI, in caso di esito positivo, il Dipartimento della Protezione Civile procederà, dopo una campagna di comunicazione dedicata, a testare il sistema per l'invio del messaggio cell broadcast su casi reali. Questa fase di test dipende dall'effettivo verificarsi di fenomeni atmosferici di severità superiore alla soglia individuata. Sarà fondamentale in questa fase l'attività di compilazione e analisi dei questionari da parte di chi avrà ricevuto i messaggi, come già fatto nella fase di test effettuati per le tipologie di rischio per le quali il sistema IT-alert è operativo dal 13 febbraio 2024, per comprendere l'impatto del sistema IT-alert per il rischio specifico sulla popolazione e valutando per i singoli eventi per cui è stato inviato il messaggio i punti analizzati nelle altre fasi (tempistiche, copertura, duplicazione/ripetizione messaggi).

Nella sperimentazione della fase 4, tenuto conto che l'adozione di soglie escluderà necessariamente alcuni possibili fenomeni dall'utilizzo di IT-alert, il sistema sarà affiancato da una piattaforma web e app per la visualizzazione degli eventi che garantisca l'informazione, accessibile liberamente

al pubblico, anche delle precipitazioni che non raggiungono la soglia di severità che innesca l'invio del messaggio IT-alert. Le caratteristiche della piattaforma e dell'app in argomento saranno definite prima dell'avvio della fase 4 della sperimentazione in raccordo con le Regioni e Province Autonome.

In riferimento alla fase 3 e 4 della sperimentazione il sistema di allarme pubblico "IT-alert" utilizza il canale *Cell broadcast* diramando allarmi al superamento della soglia di severità che si ritiene superata allorquando viene superato il valore prestabilito di almeno uno dei due indici di severità SSI e HRI descritti nell'allegato e calcolati in automatico dall'algoritmo RADAR-NEWS.

I tre canali di trasmissione (*Cell broadcast*, APP e web) sono complementari, e non concorrenti. Di conseguenza a titolo di esempio: per una precipitazione intensa che si verificasse con SSI ≥ 97° percentile, il messaggio IT-alert sarebbe trasmesso attraverso il canale *Cell broadcast* e visualizzabile anche sull'APP e sul canale Web. Diversamente, per una precipitazione il cui valore di SSI fosse compreso tra l'85° ed il 97° percentile, il messaggio verrebbe trasmesso esclusivamente attraverso il canale dei servizi Web.

I valori degli indici di severità che, quando vengono raggiunti, segnalano il superamento della soglia di severità che individua il fenomeno atmosferico rilevato come "precipitazione intensa", sono stati individuati partendo dagli esiti di un Gruppo di Lavoro composto da Dipartimento protezione civile, Centri di competenza, Regioni e Province Autonome appositamente costituito, e con il parere della Commissione nazionale per la previsione e prevenzione dei Grandi rischi- Settore rischio idraulico, idrogeologico, da fenomeni meteorologici e climatici nella seduta del 22 marzo 2024. Tali valori sono i seguenti per le **fasi 1 e 2**, per l'intero territorio nazionale.

SSI e HRI superiori al 97° percentile delle rispettive distribuzioni

Nelle successive fasi 3 e 4 saranno sperimentate soglie di attivazione del messaggio IT-alert differenziate a partire dagli esiti del Gruppo di Lavoro sopra menzionato (97° percentile per le Regioni Lazio, Campania, Abruzzo, Molise, Basilicata, Puglia, Calabria, Sicilia e Sardegna, 98° percentile nelle restanti Regioni), sperimentando, come suggerito dalla Commissione nazionale per la previsione e la prevenzione dei grandi rischi, l'effettiva necessità di differenziare tali soglie. A tal fine, le Regioni e Province Autonome, con il coordinamento del Dipartimento della protezione civile, operano una raccolta sistematica ed uniforme degli effetti a terra indotti dai singoli eventi di precipitazione intensa, sia per la fase di sperimentazione sia per gli eventi passati esaminati dal sopra citato Gruppo di Lavoro, così da disporre di un archivio indipendente ed affidabile di validazione, che tenga conto delle informazioni desumibili da, per esempio, Sale Operative di Protezione Civile, Comandi dei Vigili del Fuoco, Servizi Numero d'emergenza Unico Europeo (NUE 112). Nelle fasi 2, 3 e 4, la raccolta delle informazioni relative agli effetti a terra indotti dai singoli eventi di precipitazione intensa che hanno innescato l'invio del messaggio IT-alert al superamento delle soglie oggetto di sperimentazione, sarà centralizzata dal Dipartimento della protezione civile attraverso un modulo di segnalazione, condiviso con le Regioni e Province Autonome e compilabile on line da Centri funzionali decentrati, Sale Operative di Protezione Civile, Comandi dei Vigili del Fuoco, Servizi NUE 112 e Servizi di protezione civile comunali o delle Città Metropolitane;

Dell'avvio delle fasi di sperimentazione verrà data opportuna informazione a livello territoriale, mediante l'organizzazione, da parte delle Regioni e delle Province Autonome, di specifiche riunioni di coordinamento, di concerto con il Dipartimento della protezione civile e con ANCI, anche al fine di analizzare potenziali interferenze con la messaggistica diramata da Regioni, Province Autonome ed Enti locali, nell'ambito del sistema di allertamento nazionale.

4. Messaggio IT-alert "precipitazione intense" nella fase di sperimentazione

4.1 Invio del messaggio IT-alert

Completata positivamente la fase 2, l'invio del messaggio IT-Alert "precipitazioni intense" per la fase 3 e 4 sarà in modalità automatica, innescato dal superamento della soglia di severità di cui al paragrafo precedente.

4.2 Contenuti del messaggio

Il contenuto del messaggio IT-alert riporta la tipologia dell'evento per il quale è attivato l'allarme e

le azioni che i riceventi il messaggio dovrebbero compiere.

Intestazione	Tipologia dell'evento	Area	Scenario	Misura
Allarme Protezione Civile	Precipitazioni intense in corso o possibili	DOVE TI TROVI O IN ZONE LIMITROFE	rischio allagamenti, fulmini, grandine, trombe d'aria	Evitare zone allagabili e aree prossime a pendii/versanti/scarpate, sottopassi e piani interrati

Tabella 1. Contenuto dei Messaggi IT-alert precipitazioni intense.

Il testo del messaggio sarà definito e condiviso a valle di interlocuzioni tra il Dipartimento della Protezione Civile, le Regioni, Province Autonome ed ANCI una volta superata la fase 3

Il contenuto del messaggio potrà essere semplificato dal Dipartimento della protezione civile a seconda delle fasi della sperimentazione definite nel paragrafo "scenari".

Il messaggio IT-alert dovrà essere diramato in lingua italiana e anche in lingua inglese per informare gli stranieri eventualmente presenti sul territorio. Sul territorio della Provincia Autonoma di Bolzano sarà diramato congiuntamente nella lingua italiana e tedesca, e ove possibile anche nella lingua inglese.

Il messaggio IT-alert resta attivo nell'area di invio di norma per 1 ora, salvo la decisione, ai fini della sperimentazione, di interromperlo o replicarlo. Ai fini della sperimentazione la durata del messaggio potrà essere modulata in ragione delle fasi della sperimentazione stessa come definite nel paragrafo "scenari" oltre che dai risultati ottenuti in corso di sperimentazione.

4.3 Aree geografiche a cui si invia il messaggio

Mediante l'impiego dell'algoritmo RADAR-NEWS, al superamento delle soglie preimpostate, viene prodotto e trasmesso in via automatica un file XML in formato CAP-IT.

Per ciascun evento di precipitazione intensa è definito un poligono che contorna e ne determina, sulla base dei dati e delle informazioni disponibili, delle tecnologie utilizzabili e delle conoscenze disponibili, la probabile estensione e posizione geografica. Per ciascun poligono georeferenziato, nel file CAP-IT sono riportate le informazioni ritenute utili per la redazione e la diramazione del

messaggio attraverso più canali di comunicazione, e in particolare:

- Il codice identificativo univoco dell'evento di precipitazione intensa. Il codice è generato nella fase di "detection", e non cambia nella successiva fase di previsione della possibile traiettoria e dell'eventuale e possibile estensione delle precipitazioni intense;
- La geometria del poligono che racchiude l'area all'interno della quale diramare il "messaggio IT-alert" ("area target"). Il poligono è rappresentato da una "polilinea" in coordinate geografiche (latitudine, longitudine);
- L'estensione geografica del poligono che racchiude l'area all'interno della quale diramare il "messaggio IT-alert"; ("area target")

Come precisato nell'allegato, per ridurre possibili falsi allarmi, con l'invio del messaggio IT-alert in assenza di fenomeni o in presenza di fenomeni in relazione ai quali i dati rilevati non sono sufficienti per sostenere il superamento della soglia di severità, sono escluse le aree (gruppi di celle) più piccole di 25 km², associabili a possibili errori di elaborazione, e le aree più grandi di 1000 km², associabili a possibili anomalie strumentali.

5. Limiti

Il Sistema nazionale di allarme pubblico IT-alert non è salvifico in sé, in quanto presuppone una consapevolezza dei rischi da parte di chi lo riceve, che passa anche attraverso la conoscenza del territorio, della pianificazione di protezione civile e dei comportamenti da adottare in situazione di emergenza. IT-alert ha lo scopo di fornire informazioni tempestive - supplementari rispetto a quelle fornite da altri sistemi di comunicazione - sulle situazioni di pericolo imminente o in corso, al fine di consentire alle singole persone presenti nell'area interessata dall'allarme, l'adozione immediata, laddove possibile, di misure di autoprotezione e di azioni di tutela della collettività e del singolo.

IT-alert trasmette i propri messaggi attraverso il canale di comunicazione *cell broadcast* (disciplinato dallo standard ETSI TS 123 041, *Technical realization of Cell Broadcast Service CBS*), gestito dal Dipartimento della protezione civile per la componente CBE (*Cell Broadcast Entity*) e, per la componente CBC (*Cell Broadcast Centre*) dagli operatori di telefonia mobile. I messaggi sono trasmessi attraverso una o più celle telefoniche che coprono l'area interessata dalle condizioni di pericolo.

Con riferimento ai limiti del sistema si evidenzia che:

- Considerati gli aspetti legati alla complessità e alla peculiarità dell'orografia del nostro territorio e il funzionamento dinamico delle celle telefoniche che dipende sia dalle diverse tecnologie di connettività sia dalla modalità di utilizzo delle antenne da parte degli operatori i messaggi IT-alert possono non essere ricevuti da dispositivi telefonici presenti all'interno dell'area interessata.
- La mancata ricezione di messaggi IT-alert può essere, inoltre, causata da problemi tecnici del dispositivo stesso o dalla cella/rete a cui è collegato. Si fa riferimento, per esempio, all'indisponibilità temporanea della rete, o alla mancata copertura, che possono impedire ai messaggi IT-alert di raggiungere alcuni dispositivi presenti nell'area interessata, o consentono di raggiungerli in modi e con tempi difficilmente prevedibili a priori.
- E altresì possibile che a causa di problematiche tecnologiche non previste e non prevedibili uno o più operatori di telefonia mobile non riescano ad inviare il messaggio ai dispositivi presenti nell'area interessata.
- Potrebbe poi verificarsi che dispositivi telefonici presenti all'esterno dell'area interessata ricevano il messaggio IT-alert perché collegati ad una cella che opera sia all'esterno che all'interno dell'area stessa (fenomeno dell'overshooting).
- Ulteriori problemi di ricezione dei messaggi potrebbero essere determinati da apparecchi non conformi agli standard internazionali, oppure da apparecchi con software non aggiornabili o non aggiornati.
- Alla luce dell'incertezza associata agli scenari di rischio è possibile che il messaggio giunga in assenza di reali condizioni di pericolo o che, viceversa, non venga inviato (oppure ricevuto) nonostante sussistano tali condizioni.
- IT-alert è un messaggio di allarme rispetto al potenziale pericolo imminente o in corso, ma non può dare informazioni specifiche connesse alla vulnerabilità e all'esposizione di chi riceve il messaggio. Pertanto, nella maggior parte dei casi non è possibile indicare nel messaggio IT-alert le specifiche misure di protezione che ciascuno può mettere in atto, ma occorre limitarsi a rappresentare la situazione di pericolo.

La Direttiva [RN-5] che disciplina il Sistema nazionale di allarme pubblico "IT-alert" chiarisce che i messaggi IT-alert non sono salvifici in sé, ma finalizzati ad attivare azioni di protezione e tutela della collettività e dei singoli. Per quanto riguarda in particolare il messaggio IT-alert diramato per informare la popolazione in merito a precipitazioni intense, siano esse "temporali" o "precipitazioni persistenti", occorre considerare i seguenti elementi che possono condizionare la tempestività e l'efficacia dei "messaggi IT-alert":

5.1 Limiti delle previsioni meteorologica

- La previsione quantitativa della precipitazione si basa sull'applicazione e l'analisi di modelli numerici meteorologici, ed è intrinsecamente affetta da incertezze che ne condizionano l'accuratezza (ossia, la corretta identificazione del fenomeno) e la precisione, in termini quantitativi e di localizzazione spazio-temporale degli eventi.
- A causa dei diversi fattori che ne determinano la genesi e ne influenzano l'evoluzione, la previsione quantitativa delle precipitazioni intense è ancora più difficile e incerta, in particolare nelle regioni costiere e nelle aree montuose che caratterizzano il territorio nazionale.
- Il "cell-tracking" consiste nella previsione a brevissimo termine (tipicamente fino a 30-60 minuti), sulla base dei dati e delle informazioni disponibili, delle tecnologie utilizzabili e delle conoscenze disponibili, della probabile traiettoria delle precipitazioni intense, informazione essenziale nel contesto operativo richiesto dal sistema di allarme pubblico per il rischio connesso a precipitazioni intense. Il "cell-tracking" della precipitazione si basa sulla disponibilità e sull'aggiornamento in continuo del prodotto HRT (vedi allegato tecnico), ottenuto attraverso elaborazioni e integrazioni delle osservazioni della Rete Radar meteorologica e di altre fonti informative disponibili in tempo reale (Rete Pluviometrica, dati satellitari, fulminazioni, elaborazioni di modelli meteorologici). Fondata su di un approccio multi-sensore e multi-parametrico in grado di fornire la maggiore affidabilità oggi possibile, la previsione quantitativa della probabile traiettoria a brevissimo termine è affetta dall'incertezza intrinseca alla dinamica dei fenomeni atmosferici all'origine delle precipitazioni intense, nonché ai limiti tecnologici degli strumenti utilizzati per il monitoraggio in tempo reale, allo stato delle conoscenze scientifiche sul tema e all'effettiva e tempestiva disponibilità dei dati specifici riferiti all'evento monitorato. La qualità e l'orizzonte temporale della previsione della probabile traiettoria della precipitazione intensa, infatti, sono connesse alle caratteristiche fenomenologiche, all'orografia, alla copertura osservativa e alle caratteristiche degli apparati di misura, e in particolare alla latenza, incertezza e indisponibilità dei dati, delle misure e delle informazioni, e al possibile malfunzionamento degli apparati e delle reti.

5.2 Limiti nella stima della precipitazione

Per gli scopi dell'allarme pubblico, viene utilizzato il dato della precipitazione cumulata stimata per tutto il territorio nazionale, aggiornato ogni 5 minuti. Le stime di precipitazione si basano su dati e informazioni rilevate in automatico da diverse reti e piattaforme osservative, e in particolare: (i) la Rete Radar meteorologica (RR); (ii) la Rete Pluviometrica (RP); e (iii) le piattaforme satellitari. Ciascuna fonte d'informazione introduce incertezze nella stima delle precipitazioni. Ciò condiziona la stima della severità delle precipitazioni intense e l'affidabilità dell'informazione utilizzata per produrre e diramare i "messaggi IT-alert" per le

precipitazioni intense.

- Il radar meteorologico stima la precipitazione attraverso un processo statistico caratterizzato da incertezza. Nei territori a orografia complessa come gran parte dell'Italia, le principali fonti d'incertezza che influenzano la stima della precipitazione intensa con i sistemi radar sono: (i) le interferenze con il segnale radar da parte di ostacoli orografici; (ii) il blocco parziale o totale della propagazione elettromagnetica, che rende il radar parzialmente o completamente cieco alle precipitazioni in alcune parti del territorio; (iii) l'incremento della quota d'osservazione all'aumentare della distanza dal radar, che influenza la capacità di stimare le precipitazioni alle quote più basse; e (iv) l'attenuazione delle onde elettromagnetiche indotta dalle stesse precipitazioni. In aggiunta, sono rilevanti le interferenze generate da apparati di TLC alle microonde, come quelli utilizzati nelle reti di telefonia mobile cellulare.
- Per la stima della severità delle precipitazioni intense si utilizzano, in modo integrato, prodotti ricavati dalla RP, dalle piattaforme satellitari e dalla rete di fulminazione LAMPINET. Tali strumentazioni e reti sono state progettate e realizzate e sono operate sulla base di tecnologie finalizzate ad attività di valutazione esperta e con specifiche tecniche e di servizio che rispondono solo parzialmente alle esigenze di tempestività di IT-alert, richiedendo, in alcuni casi, lo svolgimento di azioni che richiedono tempi non compatibili con quelli imposti dalla diramazione automatica di un "messaggio IT-alert" per precipitazioni intense. Per questa ragione, la Direttiva prevede il ricorso ad un procedimento di natura automatica che prescinde dalla validazione e dall'interpretazione esperta delle misure e dei dati ricavati dalle strumentazioni e dalle reti.

5.3 Limiti nella stima della severità degli eventi

- I "messaggi IT-alert" relativi alle precipitazioni intense, e in particolare la loro diramazione attraverso i canali utilizzati dal sistema di allarme pubblico dipendono dal superamento di una prefissata soglia di severità dell'evento, che si produce al raggiungimento di determinati valori di almeno uno dei due indici, SSI e HRI (vedi allegato tecnico), utilizzati rispettivamente per i "temporali" e per le "precipitazioni persistenti". I due indici di severità sono calcolati in modo automatico dall'algoritmo RADAR News sulla base delle rilevazioni strumentali descritte nei paragrafi precedenti. Le soglie di severità che individuano il fenomeno atmosferico rilevato come "precipitazione intensa" sono state individuate a seguito dell'attività tecnico scientifica coordinata dal Dipartimento della Protezione Civile e potranno essere aggiornate, a seguito della sperimentazione di cui alle presenti indicazioni operative, prima di rendere operativo il Sistema IT-alert per il rischio precipitazioni intense.
- La stima della severità della precipitazione espressa dagli indici SSI e HRI si basa esclusivamente su misure e stime relative al "fenomeno atmosferico", ossia alla precipitazione intensa, senza informazioni o inferenze sui possibili effetti che la precipitazione intensa può avere al suolo. In questo senso, gli indici di severità SSI e HRI devono essere considerati come "analoghi" ("proxy") della pericolosità, e non delle condizioni di vulnerabilità o di rischio. Gli indici non considerano neppure la capacità di risposta del sistema di protezione civile, territoriale, sociale, delle comunità e dei singoli.
- Considerata la dinamica rapida dei fenomeni atmosferici che possono dare origine a precipitazioni intense, e le tempistiche estremamente strette (minuti) con le quali è trasmesso il "messaggio IT-alert"-le misure e le stime di precipitazione utilizzate per la misurazione degli indici SSI e HRI non possono essere validate, e possono quindi essere soggette a errore.

- Per loro natura le precipitazioni intense, in particolare i temporali, possono avvenire in aree anche lontane da dove si manifestano gli effetti indiretti delle precipitazioni, fra i quali le piene "lampo" (flash flood), gli allagamenti improvvisi in aree carsiche. La localizzazione geografica delle aree identificate come interessate da precipitazioni intense non implica quindi che aree limitrofe non possano essere interessate da precipitazioni intense, e che in queste aree non sussistano potenziali condizioni di pericolosità, vulnerabilità o rischio.
- Le informazioni provenienti dalla RR sono essenziali per la stima della severità della precipitazione espressa dagli indici SSI e HRI. Come ogni macchina, strumento o apparato, la RR è soggetta a periodi di manutenzione (ordinaria e straordinaria), a malfunzionamenti, e a rotture. Il mancato funzionamento di uno o più radar influenza la qualità e la copertura dei prodotti utilizzati per la stima della severità della precipitazione, e può condizionare la possibilità di predisporre e diramare i "messaggi IT-alert" per le precipitazioni intense.

5.4 Limiti dell'utilizzo in fase sperimentale

- Durante la fase di sperimentazione 3 i test faranno riferimento a casi reali, quindi a precipitazioni intense registrate e prevedibili a breve termine, ma i messaggi non arriveranno alla popolazione. Si tratta di uno step necessario della sperimentazione per verificare la possibilità di ridurre i falsi allarmi. Qualora i fenomeni dovessero realmente registrarsi ciò non potrà essere interpretato come un mancato allarme.
- Durante la fase di sperimentazione 4 saranno possibili diversi falsi allarmi e problemi di taratura del Sistema. Ciò è inevitabile trattandosi ancora di una fase di test e l'obiettivo è proprio quello di predisporre un sistema operativo più performante.

6. Trasparenza e tracciabilità

Il processo di gestione dei "messaggi IT-alert" soddisfa i principi di trasparenza e tracciabilità, in conformità alla Direttiva [RN-5], tramite specifici processi applicativi, sistemistici e di monitoraggio attivo e proattivo che si occupano delle attività di produzione, accettazione, controllo e invio del "messaggio IT-alert" sia da un punto di vista del funzionamento dell'infrastruttura, architettura e software che da quello della gestione in sicurezza di tutto il sistema. Il protocollo di comunicazione è basato sullo standard *Common Alerting Protocol* "CAP" nel profilo italiano "CAP IT".

I "messaggi IT-alert" sono archiviati garantendo l'integrità dei file oltre che la loro disponibilità pubblica (opendata), sia nel formato XML, proprio del protocollo "CAP IT", che in altri formati come GeoJson, Json e RSS/Atom, attraverso sistemi di interoperabilità applicativa.

Allegato

1. Contesto fenomenologico

In Italia, le precipitazioni intense sono spesso di natura convettiva, causate o accompagnate da temporali e sistemi convettivi organizzati caratteristici del clima Mediterraneo. Il territorio è anche interessato frequentemente da perturbazioni atlantiche che possono generare quantitativi di precipitazioni persistenti anche in assenza di convezione (precipitazioni avvettive e/o di natura orografica), specie lungo le catene montuose delle Alpi e degli Appennini.

In Italia come altrove, le precipitazioni intense sono sovente causa di danni prodotti dai loro effetti diretti o indiretti, fra i quali le piene "lampo" (flash flood), le colate di detrito o di fango (debris flow), le frane superficiali (soil slip), gli allagamenti improvvisi, questi ultimi più frequenti nelle aree urbane e periurbane. Associate alle precipitazioni intense si hanno spesso anche fulmini e grandinate.

2. Contesto operativo

Negli anni, la modellistica meteorologica ha migliorato l'accuratezza previsionale delle precipitazioni, ma permangono notevoli difficoltà a prevedere le precipitazioni intense, anche se organizzate su scale ampie, con le risoluzioni e le accuratezze (spaziali, temporali, d'intensità) necessarie alla messa in campo di efficaci e tempestive azioni di protezione civile, incluso l'allarme pubblico e le misure di autoprotezione individuale.

Per scopi di protezione civile, e considerati i limiti attuali della modellistica numerica meteorologica nella previsione delle precipitazioni intense, è quindi anche necessario l'utilizzo di strumenti operativi in grado di monitorare in tempo reale – quando e ove possibile – l'evoluzione dei fenomeni atmosferici che possono dare luogo a precipitazioni intense. La letteratura tecnico-scientifica e l'esperienza internazionale maturata in diversi contesti meteorologici, climatici, orografici, fisiografici e organizzativi, concorrono nell'indicare il radar meteorologico – e in particolare le reti di radar meteorologici – come lo strumento oggi più efficace per il monitoraggio in "tempo reale" e in continuo delle precipitazioni intense.

In Italia, è operativa la Rete Radar meteorologica (RR) composta da 26 sistemi radar, gestiti e operati da diverse amministrazioni (

Tabella 1) che coprono quasi interamente il territorio nazionale. Sfruttando la RR e altre fonti di informazioni meteorologiche disponibili in "tempo reale" – e in particolare la Rete Pluviometrica (RP), la rete di fulminazione LAMPINET, la rete satellitare con dati elaborati da EUMETSAT – il CFC del Dipartimento della protezione civile elabora diversi prodotti per la stima di diverse variabili meteorologiche, tra cui la precipitazione per l'intero territorio nazionale, aggiornandoli ogni cinque minuti.

Sfruttando le misure e i prodotti della RR, unitamente ad altre fonti di informazioni meteorologiche disponibili in "tempo reale", l'algoritmo realizza con cadenza di 5 minuti prodotti previsionali a brevissimo termine (fino a 30-60 minuti) inerenti la probabile traiettoria dell'area caratterizzata da precipitazioni intense, per consentire – quando e ove possibile – la messa in campo di azioni di protezione civile. Tali prodotti, realizzati per rispondere al contesto operativo del Sistema nazionale di protezione civile e alle attività dei vari soggetti ivi operanti, possono essere utilizzati nell'ambito

del sistema di Allarme pubblico per le precipitazioni intense per migliorare l'informazione della popolazione.

TABELLA 1. ELENCO DEGLI APPARATI CHE CONTRIBUISCONO ALLA RETE RADAR METEOROLOGICA.

1	11	11,6239	44,6561	San Pietro Capo Fiume	во	ARPAE Emilia- Romagna	С
2	472	11,6739	45,3561	Teolo - Monte Grande	PD	ARPA Veneto	С
3	1890	11,2072	46,4894	Macaion	TN	PAA di Trento & Bolzano	С
4	773	7,733	45,033	Bric della Croce	ТО	ARPA Piemonte	C
5	1384	8,197	44,244	Monte Settepani	SV	ARPA Piemonte & ARPA Liguria	С
6	34	10,4906	44,7894	Gattatico	RE	ARPAE Emilia- Romagna	С
7	25	13,4739	45,7228	Fossalon	GO	Regione Friuli- Venezia Giulia	С
8	1295	9,0072	40,4228	Monte Rasu	SS	Regione Sardegna	С
9	1700	13,1800	42,0500	Monte Midia	AQ	Regione Abruzzo	С
10	14	12,7906	45,6894	Loncon - Sagittaria	VE	ARPA Veneto	С
11	25	8,1700	40,5700	Capocaccia	SS	AM	C
12	82	12,2300	41,9100	Fiumicino	RM	ENAV	С
13	112	9,2800	45,3400	Linate	MI	ENAV	С
14	1026	10,6072	43,9561	Monte Pizzorne	LU	DPC	С
15	1708	16,6239	39,3728	Monte Pettinascura	cs	DPC	С
16	1428	12,7906	42,8561	Monte Serano	PG	DPC	C
17	692	14,6239	41,9394	Monte Il Monte	СН	DPC	С
18	1999	12,9739	46,5561	Monte Zoufplan	UD	DPC	С
19	1261	9,4938	39,8822	Monte Armidda	NU	DPC	c
20	960	14,8239	37,1228	Monte Lauro	SR	DPC	C
21	92	14,28	40,883	DPX1	NA	Regione Campania & DPC	X

22	14	15,6500	38,0700	DPX2	RC	DPC	X
23	55	16.7454		DPX3	BA	DPC	X
24	19	15,0498	37,4617	DPX4	CT	DPC	X
25		9,1963	45,6273	Desio	MB	Arpa Lombardia	X
26		10,1768	45,4814	Flero	BS	Arpa Lombardia	X

3. L'algoritmo per la stima automatica del superamento della soglia di severità dei fenomeni atmosferici che individua le precipitazioni intense ai fini dell'uso del sistema di allarme pubblico IT-alert

La Direttiva stabilisce che le indicazioni operative definiscano i "principi tecnici per determinare preventivamente e in via generale soglie ed altri elementi utili per identificare i fenomeni in questione [precipitazioni intense] oltre che per la delimitazione degli areali e delle tempistiche di interesse affinché il sistema operi in via automatica". A tal fine è stato sviluppato dal Dipartimento della protezione civile, in collaborazione con i Centri di Competenza, l'algoritmo RADAR-NEWS per l'identificazione e la previsione a breve termine delle precipitazioni intense.

Ogni anno, in Italia si verifica un numero elevato di eventi atmosferici caratterizzati da precipitazioni intense. La scelta degli eventi per i quali si ritiene utile avvertire la popolazione attraverso il sistema di allarme pubblico "IT-alert" si basa su di una valutazione della severità della precipitazione, a sua volta basata su parametri quantitativi forniti principalmente dalla rete radar meteorologica (RR) e dalla rete pluviometrica (RP). Ad integrazione, quando e dove disponibili, vengono anche prese in considerazione (i) le rilevazioni della rete di fulminazione LAMPINET; (ii) le risultanze dei modelli numerici di riferimento per la previsione meteorologica, con particolare riferimento ai campi di temperatura a diverse quote, dai quali si ricava l'altezza dello "zero termico"; e (iii) l'altezza della sommità delle nubi stimata da osservazioni satellitari, utilizzata per il controllo dell'omologa grandezza ottenuta dalle osservazioni radar.

Per gli scopi informativi dell'allarme pubblico, l'attenzione è rivolta ai temporali e alle precipitazioni persistenti come definite nel Glossario. Le due tipologie di fenomeni precipitativi possono coesistere in alcuni periodi dell'anno, in particolare al passaggio dalla stagione estiva a quella autunnale.

L'Indice di Severità (IS) è definito come,

$$IS = \sum_{i=1}^{N} w_i \mathcal{F}(x_i) / \sum_{i=1}^{N} w_i, \tag{1}$$

dove $\mathcal{F}(x)$ è una funzione a "rampa", lineare nell'intervallo $]x_{min}, x_{max}[$, che restituisce un valore compreso tra 0 e 1,

$$\mathcal{F}(x) = \begin{cases} \frac{0}{x - x_{min}} & x \le x_{min} \\ \frac{x - x_{min}}{x_{max} - x_{min}} & x_{min} < x < x_{max} \\ 1 & x \ge x_{max} \end{cases}$$
 (2)

Le variabili indipendenti x_i ed i relativi pesi w_i sono specificati nei paragrafi seguenti per i "temporali" e le "precipitazioni persistenti".

La Tabella 2 elenca i prodotti meteorologici utilizzati per la stima della severità degli eventi di

precipitazione intensa, "temporali" e "precipitazioni persistenti". I singoli prodotti corrispondono alle variabili x_i nelle equazioni (1) e (2).

TABELLA 2. PRODOTTI METEOROLOGICI UTILIZZATI PER LA DEFINIZIONE DELLA SEVERITÀ DELLE PRECIPITAZIONI INTENSE.

Prodotto	Descrizione	Unità
ETM	Altezza della sommità della nube stimata misurata da radar	m
PER	Precipitazione consecutiva con intensità superiore a 5 mm/h	minuti
POH	Probabilità di grandine	-
SRI	Intensità di precipitazione	mm/h
VIL	Contenuto colonnare di acqua liquida	kg/m ²
LGT	numero di fulminazioni rilevate nei 5 minuti antecedenti	-
SRT_1	Cumulata di precipitazione stimata da radar nell'ora precedente	mm
SRT ₃	Cumulata di precipitazione stimata da radar nelle 3 ore precedenti	mm
SRT ₆	Cumulata di precipitazione stimata da radar nelle 6 ore precedenti	mm

3.1 Severità dei temporali

A partire dalla definizione dell'indice IS (eq. 1), per la caratterizzazione della "severità dei temporali" si introduce lo *Storm Severity Index* (SSI), calcolato utilizzando i seguenti prodotti (*attributi* meteorologici) generati dalla RR, o ottenuti da altre fonti di dati e informazioni meteorologiche (**Tabella 2**):

- SRI, l'intensità della precipitazione [mm/h], stimata sulla base delle metodologie descritte in Vulpiani et al. (2012), Rinollo et al. (2013), Vulpiani et al. (2015);
- VIL, il contenuto integrato equivalente di acqua liquida [kg/m²];
- POH, la probabilità di grandine, stimata con il metodo proposto da Waldvogel et al. (1979) (Holleman et al., 2000);
- ETM, l'altezza della sommità della nube stimata dal radar;
- SRT₁, la cumulata della precipitazione [mm], stimata da radar nell'ora precedente;
- LGT, il numero di fulminazioni rilevate dalla rete LAMPINET in aree di 5 km × 5 km (25 km²).

I singoli *attributi* della severità dei temporali sono fra loro correlati. Ad esempio, l'altezza della sommità ("top") delle nubi è correlata all'intensità della convezione, del contenuto colonnare di acqua liquida e, di conseguenza, alla probabilità di formare grandine. La stima del "top" della nube (i) da radar, è condizionata dalla posizione relativa tra la nube e il radar, in funzione della strategia di scansione adottata e del contesto orografico, e (ii) da satellite, può essere condizionata da errori di parallasse, che contribuisce all'incertezza nella geo-localizzazione del fenomeno. Tuttavia, osservato che alcuni *attributi* risentono di problemi connessi alla loro misura o stima, si decide di considerare indipendente il contributo dei singoli *attributi* alla determinazione dell'indice SSI.

Presupponendo che l'indice SSI caratterizzi temporali che per la loro intensità possono produrre effetti al suolo – inclusi danni diretti e indiretti a persone e beni – in periodi di tempo anche molto ridotti (da minuti a decine di minuti), per il calcolo dell'indice si pesa maggiormente l'intensità di precipitazione (SRI); fermo restando che l'eventuale "natura grandinigena" del fenomeno (POH), e la contestuale presenza di fulminazione (LGT), sono fattori aggravanti la severità dell'evento di precipitazione intensa.

In conclusione, la severità di un temporale è data dalla somma pesata dei contributi dei sei *attributi* meteorologici. Nel calcolo dell'indice SSI, il peso del parametrato SRI₁ è pari a 2, mentre gli altri cinque *attributi* (VIL, POH, ETM, SRT, LGT) hanno peso pari a 1. L'indicatore di severità varia tra 0 e 1, essendo il suo valore diviso normalizzato (diviso per la somma dei pesi).

3.2 Severità delle precipitazioni persistenti

A partire dalla definizione di SI fornita in precedenza, per la caratterizzazione della "severità delle precipitazioni persistenti si introduce lo *Heavy Rain Index* (HRI), calcolato utilizzando i seguenti i prodotti della RR (**Tabella 2**):

- SRI, l'intensità della precipitazione [mm/h];
- SRT₁, la cumulata della precipitazione [mm] stimata da radar nell'ora precedente;
- SRT₃, la cumulata della precipitazione [mm] stimata nelle tre ore precedenti, ottenuta mediante la combinazione di osservazioni radar e pluviometriche mediante l'algoritmo "Modified Conditional Merging" (MCM) (Sinclair and Pegram 2005);
- SRT₆, la cumulata della precipitazione [mm], stimata nelle sei ore precedenti, ottenuta mediante la combinazione di osservazioni radar e pluviometriche mediante l'algoritmo "Modified Conditional Merging" (MCM) (Sinclair and Pegram 2005);
- PER, la persistenza della precipitazione, espressa in minuti di precipitazione consecutiva superiore a una soglia (5 mm/h).

In conclusione, la severità di una precipitazione persistente è data dalla somma pesata dei contributi dei cinque *attributi*. Nel calcolo dell'indice HRI, il peso di SRT₃ è pari a 2, mentre gli altri *attributi* (SRI, SRT₆, SRT₁, PER) hanno peso pari a 1. Anche in questo caso l'indicatore di severità varia tra 0 e 1, essendo il suo valore normalizzato (diviso per la somma dei pesi).

3.3 Identificazione e previsione di aree possibilmente interessate da precipitazioni intense da allertare

Determinati entrambi gli indici SSI e HRI, la metodologia prevede due fasi operative.

La prima fase consiste nell'individuazione ("detection") delle aree (gruppi di "celle" contigue) nelle quali uno o entrambi gli indici di severità (SSI, HRI) superano il valore di 0,42. L'algoritmo è impostato in modo da non rilevare aree (gruppi di celle) più piccole di 25 km², associabili ad errori di elaborazione (ad esempio, "clutter" residuo), e le aree più grandi di 1000 km², associabili ad anomalie strumentali. Il prodotto risultante è denominato Heavy Rain Detection (HRD), e mostra le parti di territorio nelle quali, al momento della valutazione, sulla base dei dati e delle informazioni disponibili, si stima siano in atto precipitazioni il cui monitoraggio è di interesse ai fini di protezione civile.

La seconda fase consiste nel determinare la probabile direzione prevalente e la velocità di spostamento delle aree precedentemente identificate come aree nelle quali si stima siano in atto precipitazioni intense. La direzione prevalente e la velocità di spostamento definiscono la traiettoria di movimento più probabile in un intervallo temporale predefinito, e costituiscono la previsione della probabile traiettoria ed estensione del fenomeno precipitativo intenso. L'affidabilità della previsione è tendenzialmente maggiore per le precipitazioni persistenti e più limitata per i temporali. Tuttavia, sulla base di un'analisi di eventi precipitativi intensi occorsi nel territorio nazionale dal 2019 al 2023, si è stabilito che il periodo entro cui la previsione della traiettoria e dell'estensione sono

ragionevolmente affidabili per gli scopi dell'allarme pubblico è pari a 30 minuti, sia per i temporali che per le precipitazioni persistenti. L'inviluppo geografico delle aree nelle quali, nel periodo (futuro) nominale di 30 minuti, si verificano o si prevede possano verificarsi precipitazioni intense, nella forma di "temporali" o "precipitazioni persistenti", è il prodotto della seconda fase, denominato Heavy Rain Tracking (HRT).

3.4 Soglie di severità

Seppur definiti sulla base di misure e stime quantitative di parametri fisici, gli indici di severità, SSI e HRI, sono semi-qualitativi e di valore relativo. Per il loro utilizzo nell'ambito del sistema di allarme pubblico IT-alert, è necessario stabilire una relazione funzionale fra la severità dell'evento fisico (il temporale, la precipitazione persistente) e i possibili effetti al suolo delle precipitazioni. In teoria, la determinazione di tale relazione funzionale richiede (i) informazioni quantitative sulla tipologia e l'estensione degli effetti al suolo, per diverse classi di elementi vulnerabili, inclusa la popolazione, e per differenti livelli di severità degli eventi precipitativi; e (ii) informazioni quantitative relative alla numerosità e alla tipologia degli elementi vulnerabili, e a loro variazioni nello spazio e nel tempo, a scale geografiche e temporali compatibili con quelle richieste da un efficace allarme pubblico. In pratica, con le informazioni oggi disponibili, la relazione funzionale può essere stimata solo empiricamente, e con un livello di incertezza non quantificabile, assumendo - ragionevolmente - che gli eventi precipitativi più rari sono più intensi e che a parità di esposti e della loro vulnerabilità, producono effetti al suolo (danni) maggiori. Arpa Piemonte ha compilato un archivio contenente cinque anni di osservazioni radar, e contestuali informazioni sugli effetti al suolo prodotti da precipitazioni nel territorio della regione. L'analisi dell'archivio ha permesso di stabilire una relazione empirica fra l'intensità del temporale, la gravità degli effetti al suolo, e un percentile della distribuzione empirica dell'indicatore di severità (SSI¹) (**Tabella 3**).

TABELLA 3. CORRISPONDENZA TRA LA CLASSE DI SEVERITÀ, L'INTENSITÀ DEL TEMPORALE, GLI EFFETTI AL SUOLO, E IL CORRISPONDENTE PERCENTILE DELLA DISTRIBUZIONE EMPIRICA DELL'INDICE SSI. FONTE: RAPPORTO TECNICO DELLA CONVENZIONE DPC – ARPA PIEMONTE 2019–2021 (2020).

Classe di severità	Intensità del temporale	Effetti al suolo	Percentile SSI
1	Estremamente debole	Nessun effetto	$SSI \leq p_{50}$
2	Debole	Effetti trascurabili	$p_{50} < SSI \le p_{70}$
3	Usuale	Effetti reversibili	$p_{70} < SSI \le p_{85}$
4	Intensa	Danni reversibili	$p_{85} < SSI \le p_{97}$
5	Estremamente intensa	Danni ingenti	$SSI > p_{97}$

Applicando l'approccio sperimentato da Arpa Piemonte a un archivio nazionale di osservazioni radar che copre il periodo marzo 2020 - settembre 2023, il CFC ha calcolato cinque percentili della distribuzione empirica degli indicatori di severità SSI e HRI, e di alcuni attributi meteorologici (SRI, VIL) che contribuiscono a definire la severità, p = 70, 85, 90, 95, 97 come riassunto nella tabella seguente (**Tabella 3**).

TABELLA 4. VALORI DEL 70°, 85°, 90°, 95° E 97° PERCENTILE, E DEL MASSIMO VALORE DELLE DISTRIBUZIONI DEI PARAMETRI SSI, SRI, VIL CALCOLATI A SCALA NAZIONALE NEL PERIODO LUGLIO 2017 – OTTOBRE 2020.

Variabile	P 70	P85	P 90	P 95	P 97	max
SSI	0,44	0,57	0,64	0,75	0,82	1,0
HRI	0,37	0,50	0,58	0,70	0,78	1,0

^{1 .} L'indice SSI definito da Arpa Piemonte non è uguale a quello utilizzato dal DPC a scala nazionale.

SRI	94	118	145	186	218	300,0
VIL	27	38	44	54	62	127

Il Capo del Dipartimento della protezione civile ha istituito con Decreto n. 3392 del 23 dicembre 2022 un Gruppo di lavoro per la valutazione degli algoritmi e delle relative procedure di funzionamento utilizzati dal Servizio Centro Funzionale Centrale del Dipartimento della protezione civile per l'identificazione nel tempo reale di aree geografiche interessate da precipitazioni intense, nonché per la previsione a breve termine ("nowcasting") di aree geografiche potenzialmente interessate da precipitazioni intense.

Successivamente, con Decreto n. 2980 del 29 settembre 2023, il Capo del Dipartimento della protezione civile ha istituito un secondo Gruppo di lavoro perché valutasse - ai fini del miglioramento dell'algoritmo RADAR-NEWS di cui sopra – alcune proposte di sviluppo. Le indicazioni operative tengono conto, in particolare nella definizione delle soglie di allarme, dei risultati dei due gruppi di lavoro.

3.5 Canali di trasmissione dei messaggi e attivazione degli stessi

IT-alert utilizza il cell-broadcast come canale principale di invio degli allarmi, altri sistemi sono a supporto del sistema anche per una migliore disseminazione degli stessi oltre che per trasparenza operativa. I canali sono:

- 1. Cell-broadcast, il sistema principale di comunicazione che permette di inviare i messaggi di allarme a tutti i dispositivi agganciati a celle che forniscono connettività telefonica all'area oggetto di evento;
- 2. IT-alert Web, il sistema di visualizzazione su web di tutti gli eventi, su piattaforma cartografica, anche se questi non dovessero raggiungere i livelli necessari all'attivazione dei messaggi IT-alert, il sistema permetterà di visualizzare l'evoluzione degli eventi e visualizzarli graficamente;
- 3. IT-alert App, un sistema che permette di avere notifica e informazione di tutti gli eventi inviati sul sistema cell-broadcast e che permette di visualizzare l'area di evento e ricevere informazioni aggiuntive.

Per ognuno dei canali sopracitati, durante la sperimentazione, saranno elaborati algoritmi e procedure che definiranno le modalità di ripetizione, modifica o cancellazione di eventi in base all'evoluzione degli stessi.

Al fine di poter attivare le precipitazioni intense su IT-alert, sarà necessario avere attivi sia il canale web, che l'app e potranno essere necessari ulteriori test e sperimentazioni al fine di provare le modalità di gestione dei messaggi nei diversi canali.

3.6 File "CAP-IT"

La Direttiva del Presidente del Consiglio dei Ministri che disciplina l'organizzazione di IT-alert [RN-5] prevede che per garantire l'interoperabilità con altri sistemi di divulgazione di allerte e allarmi di emergenza e avvisi pubblici, IT-alert adotti lo standard internazionale "Common Alerting Protocol" (CAP) – nel profilo italiano CAP-IT, definito da una specifica indicazione operativa del Capo del Dipartimento della protezione civile. Per diramare le informazioni relative alle precipitazioni intense attraverso il sistema di allarme pubblico IT-alert, il Dipartimento della protezione civile, mediante l'impiego dell'algoritmo RADAR-NEWS, al superamento delle soglie di cui al paragrafo successivo,

produce e trasmette in via automatica un file XML in formato CAP-IT.

Per ciascun evento di precipitazione intensa, sia essa un "temporale" o una "precipitazione persistente" identificato nella fase di "detection", è definito un poligono che contorna e ne determina l'estensione e la posizione geografica. Per ciascun poligono georeferenziato, nel file "CAP-IT" sono riportate le informazioni ritenute utili per la redazione e la diramazione del messaggio attraverso più canali di comunicazione, e in particolare:

- Il codice identificativo univoco dell'evento di precipitazione intensa. Il codice è generato nella fase di "detection", e non cambia nella successiva fase di previsione della possibile traiettoria e dell'eventuale e possibile estensione della precipitazione intensa (HRT);
- La geometria del poligono che racchiude l'area all'interno della quale diramare il "messaggio IT-alert" ("area target"). Il poligono è rappresentato da una "polilinea" in coordinate geografiche (latitudine, longitudine);
- L'estensione geografica del poligono che racchiude l'area all'interno della quale diramare il "messaggio IT-alert"; ("area target")
- Il nome del Comune nel cui territorio è stato identificato il punto con la maggiore intensità di precipitazione dell'evento;
- Il nome della Provincia nella quale ricade il Comune nel cui territorio è stato identificato il punto con la maggiore intensità di precipitazione dell'evento;
- La data e l'ora (UTC) di identificazione dell'evento di precipitazione intensa;
- Il tempo di validità del messaggio "CAP-IT precipitazioni intense", in minuti, a partire dalla data e ora (UTC) di identificazione dell'evento;
- Il valore dell'indice di severità SSI assegnato all'evento di precipitazione intensa;
- I valori delle sei grandezze utilizzate per calcolare l'indice di severità SSI;
- Il valore dell'indice di severità HRI assegnati all'evento di precipitazione intensa;
- I valori delle cinque grandezze utilizzate per calcolare l'indice di severità HRI:
- La probabile velocità e la direzione di spostamento utilizzate per stimare la posizione e l'estensione geografica dell'area verso la quale si potrebbe dirigere l'evento di precipitazione intensa; e
- Il valore di "correlazione", che rappresenta un indicatore di "confidenza" della stima dell'estensione geografica dell'area verso la quale si dirige l'evento.

Il file XML generato dal CFC è compatibile con lo standard "CAP-IT", così come specificato da una indicazione operativa del Capo Dipartimento della protezione civile, prediposta *ad hoc* ai sensi della citata Direttiva [RN-5].

Tresidenzadel Consiglio/dei/Ministri

DIPARTIMENTO DELLA PROTEZIONE CIVILE

Indicazioni Operative per la sperimentazione di messaggi di allarme pubblico IT-Alert per "precipitazioni intense" ai sensi del paragrafo 5 della Direttiva del Presidente del Consiglio dei Ministri del 23 ottobre 2020.

IL CAPO DEL DIPARTIMENTO

- VISTA la legge 23 agosto 1988, n. 400, concernente la disciplina dell'attività di Governo e ordinamento della Presidenza del Consiglio dei ministri;
- VISTO il decreto legislativo 30 luglio 1999, n. 303, concernente l'ordinamento della Presidenza del Consiglio dei ministri, a norma dell'articolo 11 della legge 15 marzo 1997, n. 59;
- VISTO il decreto del Presidente del Consiglio dei ministri del 23 luglio 2024, con il quale è stato conferito al dott. Fabio Ciciliano, ai sensi degli articoli 18 e 28 della legge 23 agosto 1988, n. 400, nonché dell'art. 19 del decreto legislativo 30 marzo 2001, n. 165, l'incarico di Capo del Dipartimento della protezione civile, a far data dal 25 luglio 2024 e fino al verificarsi della fattispecie di cui all'art. 18, comma 3, della legge 23 agosto 1988, n. 400, fatto salvo quanto previsto dall'art. 3 del luglio 1997, n. 520;
- **VISTO** il decreto legislativo 2 gennaio 2018, n. 1, recante «Codice della protezione civile», ed in particolare gli articoli 15 e 17;
- VISTO il comma 1 dell'art. 110 della direttiva (UE) 2018/1972 del Parlamento europeo e del Consiglio, che istituisce il Codice europeo delle comunicazioni elettroniche;
- **VISTO** il decreto legislativo 1° agosto 2003, n. 259, «Codice delle comunicazioni elettroniche», e in particolare gli articoli 11 e 13;
- **VISTO** il decreto legislativo 7 marzo 2005, n. 82, recante «Codice dell'amministrazione digitale»;
- VISTO il decreto legislativo 14 marzo 2013, n. 33, recante «Riordino della disciplina riguardante il diritto di accesso civico e gli obblighi di pubblicità, trasparenza e diffusione di informazioni da parte delle pubbliche amministrazioni»;
- VISTO il decreto-legge 18 aprile 2019, n. 32, recante «Disposizioni urgenti per il rilancio del settore dei contratti pubblici, per l'accelerazione degli interventi infrastrutturali, di rigenerazione urbana e di ricostruzione a seguito di eventi sismici», convertito, con modificazioni, dalla legge 14 giugno 2019, n. 55 ed in particolare l'art. 28 che introduce nel Codice delle comunicazioni elettroniche le definizioni di Sistema di allarme pubblico, di servizio «Cell broadcast», di «messaggio IT-Alert» e di «servizio IT-Alert», nonché l'obbligo per gli operatori nazionali di telefonia mobile di mantenere attivo il servizio IT-Alert, pena sanzioni amministrative e/o la perdita delle frequenze e della qualifica di operatore nazionale;

Tresidenzadel Consiglio/dei Ministri

DIPARTIMENTO DELLA PROTEZIONE CIVILE

- VISTO il decreto-legge 21 settembre 2019, n. 105, convertito, con modificazioni, dalla legge 18 novembre 2019, n. 133, recante "Disposizioni urgenti in materia di perimetro di sicurezza nazionale cibernetica e di disciplina dei poteri speciali nei settori di rilevanza strategica";
- VISTA la direttiva del Presidente del Consiglio dei ministri del 27 febbraio 2004, recante «Indirizzi operativi per la gestione organizzativa e funzionale del sistema di allertamento nazionale per il rischio idrogeologico e idraulico ai fini di protezione civile», pubblicata nella Gazzetta Ufficiale n. 59 dell'11 marzo 2004, e successive modificazioni;
- VISTA la nota del Capo del Dipartimento della protezione civile, prot. n. 7117 del 10 febbraio 2016, con indicazioni operative recanti «Metodi e criteri per l'omogeneizzazione dei messaggi del Sistema di allertamento nazionale per il rischio meteo-idrogeologico e idraulico e della risposta del sistema di protezione civile»;
- VISTO il decreto del Presidente del Consiglio dei ministri 19 giugno 2020, n. 110 recante «Modalità e criteri di attivazione e gestione del servizio IT-Alert»;
- VISTA la Direttiva del Presidente del Consiglio dei ministri 23 ottobre 2020, recante "Allertamento di protezione civile e sistema di allarme pubblico IT-Alert in riferimento alle attività di protezione civile", come modificata dalla Direttiva del Ministro per la protezione civile e le politiche del mare del 7 febbraio 2023.
- VISTO il paragrafo 4.1 della Direttiva del Presidente del Consiglio dei Ministri del 23 ottobre 2020 citata con cui si prevede che le componenti del Servizio nazionale della protezione civile, sulla base di quanto previsto dalle indicazioni operative, durante la fase sperimentale, potranno utilizzare IT-Alert per trasmettere, quando compatibili con la tipologia di rischio identificato, "messaggi IT-Alert" alla popolazione attraverso la tecnologia "cell broadcast" limitatamente a eventi imminenti o in atto suscettibili di presentare le caratteristiche di cui alla lettera c) dell'articolo 7, comma 1, del decreto legislativo n. 1 del 2018 configuranti, ai fini della Direttiva UE 2018/1972, gravi emergenze e catastrofi, in relazione alle seguenti tipologie di rischi di protezione civile: maremoto generato da un sisma; collasso di una grande diga; attività vulcanica, relativamente ai vulcani Vesuvio, Campi Flegrei, Vulcano e Stromboli; incidenti nucleari o situazione di emergenza radiologica; incidenti rilevanti in stabilimenti soggetti al decreto legislativo 26 giugno 2015, n. 105; precipitazioni intense;
- VISTO il paragrafo 4.6 della Direttiva del Presidente del Consiglio dei Ministri del 23 ottobre 2020 in cui viene disciplinato il periodo di sperimentazione di IT-Alert-protezione civile;
- **TENUTO CONTO** degli esiti della seduta della Conferenza Unificata dell'8 febbraio 2024 con cui, tra l'altro, in relazione alle precipitazioni intense, è stata disposta la proroga di un ulteriore anno del periodo di sperimentazione;
- VISTO, altresì, il paragrafo 5 della citata Direttiva del 23 ottobre 2023 con il quale si prevede che il Capo del Dipartimento della protezione civile emani apposite indicazioni operative in

Tresidenzadel Consiglio/dei/Ministri

DIPARTIMENTO DELLA PROTEZIONE CIVILE

relazione alle tipologie di rischio identificate nel paragrafo 4 della medesima direttiva e sulla base di quanto disposto al paragrafo 4.6, ai sensi dell'articolo 15, comma 3, del decreto legislativo n. 1 del 2018, sulle quali, in coerenza con l'architettura del Sistema di allertamento nazionale e con l'attribuzione delle funzioni di informazione e comunicazione alla popolazione previste dalla legislazione vigente, viene acquisita l'intesa della Conferenza unificata;

CONSIDERATO con decreto del Capo del Dipartimento della protezione civile del 19 gennaio 2024 sono state adottate le "indicazioni operative ai sensi del paragrafo 5 della Direttiva del Presidente del Consiglio dei Ministri del 23 ottobre 2020 citata, riguardanti i rischi: maremoto generato da un sisma, collasso di una grande diga, attività vulcanica, relativamente ai vulcani Vesuvio, Campi Flegrei, Vulcano e Stromboli, incidenti nucleari o a situazioni di emergenza radiologica, incidenti rilevanti in stabilimenti soggetti al decreto legislativo 26 giugno 2015, n. 105 e sono state, altresì, adottate, in attuazione del paragrafo 4.2 della citata Direttiva, le indicazioni operative recanti la definizione del profilo italiano del "Common Alerting Protocol" (CAP) corredato dalla relativa appendice tecnica;

CONSIDERATO, altresì, che per quanto riguarda il rischio "precipitazioni intense" occorre, ai fini della valutazione dell'effettiva possibilità di messa in operatività del sistema IT-Alert relativo a tale tipologia di rischio, della programmazione di una fase di sperimentazione *ad hoc* sulla base di quanto disposto dal citato paragrafo 4.6 della Direttiva del Presidente del Consiglio dei Ministri del 23 ottobre 2020;

ACQUISITA l'intesa della Conferenza Unificata nella seduta del 28 novembre 2024 di cui alla nota DAR prot. n. 0019429 del 3 dicembre 2024;

DECRETA

ARTICOLO 1

(Adozione delle indicazioni operative per "precipitazioni intense")

- 1. Sono adottate, ai sensi dei paragrafi 4.6 e 5 della Direttiva del Presidente del Consiglio dei Ministri del 23 ottobre 2020, le Indicazioni Operative per la sperimentazione di messaggi di allarme pubblico IT-Alert per "precipitazioni intense".
- 2. L'allegato costituisce parte integrante e sostanziale del presente decreto, che viene pubblicato sul sito *internet* istituzionale del Dipartimento della protezione civile della Presidenza del Consiglio dei Ministri e sul sito *internet* istituzionale di IT-Alert.

Tresidenzadel Consiglio/dei Ministri

DIPARTIMENTO DELLA PROTEZIONE CIVILE

ARTICOLO 2 (Clausola di invarianza finanziaria)

- 1. Agli adempimenti di cui al presente decreto le amministrazioni interessate provvedono nell'ambito delle risorse umane, strumentali e finanziarie disponibili a legislazione vigente.
- 2. Dal presente decreto non derivano nuovi o maggiori oneri per la finanza pubblica.

ARTICOLO 3 (Clausola di salvaguardia)

1. Per le Province autonome di Trento e di Bolzano restano ferme le competenze loro affidate dai relativi statuti e dalle relative norme di attuazione, ai sensi dei quali provvedono alle finalità delle presenti indicazioni operative.

Roma, 0 6 [][,2024

IL CAPO DEL DIPARTIMENTO

Fabio Ciciliano

MODULARIO P.C.M. - P.C. - 9

DIPARTIMENT DELLA PROTEZIONE CIVILE

UFFICIO PER IL COORDINAMENTO DELL'ATTIVITÀ GIURIDICA E LEGISLATIVA E DEL CONTENZIOSO SERVIZIO ATTIVITÀ GIURIDICA E LEGISLATIVA

INDIRIZZI IN ALLEGATO

Risporta al Toglio del

OGGETTO: "Indicazioni operative per la sperimentazione di messaggi di allarme pubblico IT-alert per precipitazioni intense" ai sensi del paragrafo 5 della Direttiva del Presidente del Consiglio dei Ministri del 23 ottobre 2020 e s.m.i. "Allertamento di protezione civile e sistema di allarme pubblico IT-Alert", a seguito delle modifiche introdotte al Codice delle comunicazioni elettroniche dal decreto legislativo 8 novembre 2021 n. 207, di recepimento della direttiva (UE) 2018/1972 del Parlamento europeo e del Consiglio. Intesa sancita dalla Conferenza Unificata della seduta del 28 novembre 2024.

Facendo seguito alle interlocuzione sul tema, si trasmette, in allegato, il decreto del Capo del Dipartimento della protezione civile di adozione delle "Indicazioni operative per la sperimentazione di messaggi di allarme pubblico IT-alert per precipitazioni intense", a seguito dell'intesa della Conferenza Unificata, sancita, in data 28 novembre 2024, ai sensi del punto 4.6 della Direttiva del Presidente del Consiglio dei Ministri del 23 ottobre 2020.

Si prega le SS.LL. di voler dare massima diffusione delle indicazioni operative indicate in oggetto, che verranno, ad ogni modo, pubblicizzate anche attraverso il sito istituzionale di IT-Alert e del Dipartimento della protezione civile.

> IL CAPO DEL/DIPARTIMENTO Fabio Qigiliano

IL DIRIGENTE DEL SERVIZIO

Fabio Iannaccone

IL DIRETTORE DELL'UFFICIO

Roberto Giarola

Foglio n. 2

Al Gabinetto del Ministro degli affari esteri e della cooperazione internazionale gabinetto.legislativo@cert.it

Al Gabinetto del Ministro delle infrastrutture e dei trasporti <u>ufficio.gabinetto@pec.mit.it</u>

Al Gabinetto del Ministro dell'interno Gabinetto.ministro@pec.interno.it

Al Gabinetto del Ministro della Giustizia gabinetto.ministro@giustiziacert.it

Al Gabinetto del Ministro della difesa udc@postacert.difesa.it

Al Gabinetto del Ministro dell'economia e delle finanze ufficiodigabinetto@pec.mef.gov.it

Al Gabinetto del Ministro delle imprese e del Made in Italy gabinetto@pec.mise.gov.it

Al Gabinetto del Ministro dell'agricoltura e della sovranità alimentare e delle foreste aoo.gabinetto@pec.politicheagricole.gov.it

Al Gabinetto del Ministro dell'ambiente e della sicurezza energetica segreteria.capogab@pec.minambiente.it

Al Gabinetto del Ministro del lavoro e delle politiche sociali gabinettoministro@pec.lavoro.gov.it

Al Gabinetto del Ministro dell'istruzione del merito <u>uffgabinetto@postacert.istruzione.it</u>

> Al Gabinetto del Ministro dell'Università e della ricerca gabinetto@pec.mur.gov.it

Al Gabinetto del Ministro della cultura udcm@pec.cultura.gov.it

Al Gabinetto del Ministro della salute

Foglio n. 3

gab@postacert.sanita.it

Al Gabinetto del Ministro per il turismo ufficiogabinetto@pec.ministeroturismo.gov.it

Al Gabinetto del Ministro per lo sport e i giovani ufficiosport@pec.governo.it

Al Gabinetto del Ministro per le riforme istituzionali e la semplificazione normativa gabinettoriforme@pec.governo.it

Al Gabinetto del Ministro per gli affari regionali e le autonomie affariregionali@pec.governo.it

Al Gabinetto del Ministro per i rapporti con il Parlamento rapportiparlamento@mailbox.governo.it

Al Gabinetto del Ministro per gli affari europei, il sud, le politiche di coesione e il PNRR ministro.affarieuropeicoesionepnrr@pec.governo.it

Al Gabinetto del Ministro per le disabilità gabinetto.ministrodisabilita@pec.governo.it

Al Gabinetto del Ministro per la famiglia, la natalità e le pari opportunità gabinetto.parifam@pec.governo.it

Al Gabinetto del Ministro per la pubblica amministrazione gabinettoministropa@pec.governo.it

Al Presidente della Conferenza delle Regioni e delle Province autonome conferenza@pec.regioni.it

Al Presidente dell'Associazione Nazionale dei Comuni Italiani anci@pec.anci.it

Al Presidente dell'Unione Province Italiane segreteria@upinet.it

e,p.c. All'Ufficio di Gabinetto del Ministro per la protezione civile e le politiche del mare segreteria.ministroprotezionecivileemare@governo.it

Alla Commissione Protezione civile della Conferenza delle Regioni e delle Province Autonome di Trento e Bolzano cspc@pec.provincia.tn.it